
Lecture 01
Fahad Zafar

2

Abstract data types (ADTs) are data types created by the
programmer. ADTs have their own range (or domain) of
data and their own set of operations that may be performed
on them.

3

An abstraction is a general model of something.

4

 C++ has several primitive data types:

Table 11-1

bool int unsigned long int

char long int float

unsigned char unsigned short int double

short int unsigned int long double

5

 A data type created by the programmer

 The programmer decides what values are acceptable for the data type

 The programmer decides what operations may be performed on the data type

6

 C++ allows you to group several variables together into a single item known as a
structure.

7

Variable
Declaration

Information Held

int EmpNumber; Employee Number

char Name[25]; Employee’s Name

float Hours; Hours Worked

float PayRate; Hourly Pay Rate

float GrossPay; Gross Pay

8

struct PayRoll

{

int EmpNumber;

char Name[25];

float Hours;

float PayRate;

float GrossPay;

};

9

empNumber

name

hours

payRate

grossPay

deptHead

Structure Variable Name

Members

10

empNumber

name

hours

payRate

grossPay

deptHead

empNumber

name

hours

payRate

grossPay

foreman

empNumber

name

hours

payRate

grossPay

associate

11

 Create the structure declaration. This establishes the tag (or name) of the structure
and a list of items that are members.

 Declare variables (or instances) of the structure and use them in the program to
hold data.

12

 The dot operator (.) allows you to access structure members in a program

What is Classification?
Minerals

 A class represents a set of objects that share a common structure and common
behavior.

 External Observable Attributes i.e. Unchanged

Class

 A class is a programmer-defined data type. It

consists of data and functions which

operate on that data.

 Placing data and functions together into a

single entity is the central idea of object-

oriented programming.

16

Procedural programming is a method of writing software. It
is a programming practice centered on the procedures, or
actions that take place in a program.

Object-Oriented programming is centered around the
object. Objects are created form abstract data types that
encapsulate data and functions together.

17

 Programs with excessive global data

 Complex and convoluted programs

 Programs that are difficult to modify and extend

18

 OOP is centered around the object, which packages together both the data and the
functions that operate on the data.

19

Member Variables
float width;

float length;

float area;

Member Functions
void setData(float w, float l)

{ … function code … }

void calcArea(void)

{ … function code … }

void getWidth(void)

{ … function code … }

void getLength(void)

{ … function code … }

void getArea(void)

{ … function code … }

20

 In OOP, an object’s member variables are often called its attributes and its member
functions are sometimes referred to as its behaviors or methods.

21

22

 Although the use of objects is only limited by the programmer’s imagination, they
are commonly used to create data types that are either very specific or very
general in purpose.

23

 Creating data types that are improvements on C++’s built-in data
types. For example, an array object could be created that works
like a regular array, but additionally provides bounds-checking.

 Creating data types that are missing from C++. For instance, an
object could be designed to process currencies or dates as if they
were built-in data types.

 Creating objects that perform commonly needed tasks, such as
input validation and screen output in a graphical user interface.

24

 Data types created for a specific application. For example, in an inventory
program.

25

 In C++, the class is the construct primarily used to create objects.
class class-name

{

// declaration statements here

};

26

class Rectangle

{

private:

float width, length, area;

public:

void setData(float, float);

void calcArea(void);

float getWidth(void);

float getLength(void);

float getArea(void);

};

27

The key words private and public are access specifiers.

private means they can only be accessed by the member
functions.

public means they can be called from statements outside
the class.
 Note: the default access of a class is private, but it is still a good

idea to use the private key word to explicitly declare private
members. This clearly documents the access specification of the
class.

28

 Class member functions are defined similarly to regular functions.

void Rectangle::setData(float w, float l)

{

width = w;

length = l;

}

29

 Class objects must be defined after the class is declared.

 Defining a class object is called the instantiation of a class.

 Rectangle box; // box is an instance of Rectangle

30

box.calcArea();

31

// This program demonstrates a simple class.

#include <iostream.h>

// Rectangle class declaration.

class Rectangle

{

private:

float width;

float length;

float area;

public:

void setData(float, float);

void calcArea(void);

float getWidth(void);

float getLength(void);

float getArea(void);

};

32

PROGRAM CONTINUES

// setData copies the argument w to private member width and

// l to private member length.

void Rectangle::setData(float w, float l)

{

width = w;

length = l;

}

// calcArea multiplies the private members width and length.

// The result is stored in the private member area.

void Rectangle::calcArea(void)

{

area = width * length;

}

33

PROGRAM CONTINUES

// getWidth returns the value in the private member width.

float Rectangle::getWidth(void)

{

return width;

}

// getLength returns the value in the private member length.

float Rectangle::getLength(void)

{

return length;

}

// getArea returns the value in the private member area.

float Rectangle::getArea(void)

{

return area;

}

34

PROGRAM CONTINUES

void main(void)

{

Rectangle box;

float wide, long;

cout << "This program will calculate the area of a\n";

cout << "rectangle. What is the width? ";

cin >> wide;

cout << "What is the length? ";

cin >> long;

box.setData(wide, long);

box.calcArea();

cout << "Here is the rectangle's data:\n";

cout << "width: " << box.getWidth() << endl;

cout << "length: " << box.getLength() << endl;

cout << "area: " << box.getArea() << endl;

}

35

PROGRAM OUTPUT

This program will calculate the area of a

rectangle. What is the width? 10 [Enter]

What is the length? 5 [Enter]

Here is the rectangle's data:

width: 10

length: 5

area: 50

36

 In object-oriented programming, an object should protect its important data by
making it private and providing a public interface to access that data.

37

 A constructor is a member function that is automatically called when a class object
is created.

 Constructors have the same name as the class.

 Constructors must be declared publicly.

 Constructors have no return type.

38

// This program demonstrates a constructor.

#include <iostream.h>

class Demo

{

public:

Demo(void); // Constructor

};

Demo::Demo(void)

{

cout << "Welcome to the constructor!\n";

}

39

PROGRAM CONTINUES

void main(void)

{

Demo demoObj; // Declare a Demo object;

cout << "This program demonstrates an object\n";

cout << "with a constructor.\n";

}

40

PROGRAM OUTPUT

Welcome to the constructor.

This program demonstrates an object

with a constructor.

41

// This program demonstrates a constructor.

#include <iostream.h>

class Demo

{

public:

Demo(void); // Constructor

};

Demo::Demo(void)

{

cout << "Welcome to the constructor!\n";

}

42

PROGRAM CONTINUES

void main(void)

{

cout << "This is displayed before the object\n";

cout << "is declared.\n\n";

Demo demoObj;

cout << "\nThis is displayed after the object\n";

cout << "is declared.\n";

}

43

PROGRAM OUTPUT

This is displayed before the object

is declared.

Welcome to the constructor.

This is displayed after the object

is declared.

44

 When a constructor does not have to accept arguments, it is called an object’s
default constructor. Like regular functions, constructors may accept arguments,
have default arguments, be declared inline, and be overloaded.

45

// This program demonstrates a class with a constructor
#include <iostream.h>
#include <string.h>

class InvItem

{

private:

char *desc;

int units;

public:

InvItem(void) { desc = new char[51]; }

void setInfo(char *dscr, int un) { strcpy(desc, dscr);

units = un;}

char *getDesc(void) { return desc; }

int getUnits(void) { return units; }

};

46

PROGRAM CONTINUES

void main(void)

{

InvItem stock;

stock.setInfo("Wrench", 20);

cout << "Item Description: " << stock.getDesc() << endl;

cout << "Units on hand: " << stock.getUnits() << endl;

}

47

PROGRAM OUTPUT

Item Description: Wrench

Units on hand: 20

48

A destructor is a member function that is automatically
called when an object is destroyed.
 Destructors have the same name as the class, preceded by a tilde

character (~)

 In the same way that a constructor is called then the object is
created, the destructor is automatically called when the object is
destroyed.

 In the same way that a constructor sets things up when an object is
created, a destructor performs shutdown procedures when an
object is destroyed.

49

// This program demonstrates a destructor.

#include <iostream.h>

class Demo

{

public:

Demo(void); // Constructor

~Demo(void); // Destructor

};

Demo::Demo(void)

{

cout << "Welcome to the constructor!\n";

}

50

PROGRAM CONTINUES

Demo::~Demo(void)

{

cout << "The destructor is now running.\n";

}

void main(void)

{

Demo demoObj; // Declare a Demo object;

cout << "This program demonstrates an object\n";

cout << "with a constructor and destructor.\n";

}

51

PROGRAM OUTPUT

Welcome to the constructor!

This program demonstrates an object

with a constructor and destructor.

The destructor is now running.

52

#include <iostream.h>
#include <string.h>
class InvItem

{

private:

char *desc;

int units;

public:

InvItem(void) { desc = new char[51]; }

~InvItem(void) { delete desc; }

void setInfo(char *dscr, int un) { strcpy(desc, dscr);

units = un;}

char *getDesc(void) { return desc; }

int getUnits(void) { return units; }

};

53

PROGRAM CONTINUES

void main(void)

{

InvItem stock;

stock.setInfo("Wrench", 20);

cout << "Item Description: " << stock.getDesc() << endl;

cout << "Units on hand: " << stock.getUnits() << endl;

}

54

PROGRAM OUTPUT

Item Description: Wrench

Units on hand: 20

55

 Information can be passed as arguments to an object’s constructor.

56

Contents of sale.h

#ifndef SALE_H

#define SALE_H

// Sale class declaration

class Sale

{

private:

float taxRate;

float total;

public:

Sale(float rate) { taxRate = rate; }

void calcSale(float cost)

{ total = cost + (cost * taxRate) };

float getTotal(void) { return total; }

};

#endif

57

PROGRAM CONTINUES

Contents of main program, pr13-10.cpp

#include <iostream.h>

#include "sale.h"

void main(void)

{

Sale cashier(0.06); // 6% sales tax rate

float amnt;

cout.precision(2);

cout.setf(ios::fixed | ios::showpoint);

cout << "Enter the amount of the sale: ";

cin >> amnt;

cashier.calcSale(amnt);

cout << "The total of the sale is $";

cout << cashier.getTotal << endl;

}

58

PROGRAM OUTPUT

Enter the amount of the sale: 125.00

The total of the sale is $132.50

59

Contents of sale2.h

#ifndef SALE2_H

#define SALE2_H

// Sale class declaration

class Sale

{

private:

float taxRate;

float total;

public:

Sale(float rate = 0.05) { taxRate = rate; }

void calcSale(float cost)

{ total = cost + (cost * taxRate) };

float getTotal (void) { return total; }

};

#endif

60

PROGRAM CONTINUES

Contents of main program, pr13-11.cpp

#include <iostream.h>

#include "sale2.h"

void main(void)

{

Sale cashier1; // Use default sales tax rate

Sale cashier2 (0.06); // Use 6% sales tax rate

float amnt;

cout.precision(2);

cout.set(ios::fixed | ios::showpoint);

cout << "Enter the amount of the sale: ";

cin >> amnt;

cashier1.calcSale(amnt);

cashier2.calcSale(amnt);

61

PROGRAM CONTINUES

cout << "With a 0.05 sales tax rate, the total\n";

cout << "of the sale is $";

cout << cashier1.getTotal() << endl;

cout << "With a 0.06 sales tax rate, the total\n";

cout << "of the sale is $";

cout << cashier2.getTotal() << endl;

}

62

PROGRAM OUTPUT

Enter the amount of the sale: 125.00

With a 0.05 sales tax rate, the total

of the sale is $131.25

With a 0.06 sales tax rate, the total

of the sale is $132.50

63

 This section shows how classes may be designed to validate user input.

64

// This program demonstrates the CharRange class.

#include <iostream.h>

#include "chrange.h" // Remember to compile & link chrange.cpp

void main(void)

{

// Create an object to check for characters

// in the range J - N.

CharRange input('J', 'N');

cout << "Enter any of the characters J, K, l, M, or N.\n";

cout << "Entering N will stop this program.\n";

while (input.getChar() != 'N');

}

65

PROGRAM OUTPUT WITH EXAMPLE INPUT

Enter any of the characters J, K, l, M, or N

Entering N will stop this program.

j

k

q

n [Enter]

66

 More than one constructor may be defined for a class.

67

Contents of invitem2.h

#ifndef INVITEM2_H

#define INVITEM2_H

#include <string.h>// Needed for strcpy function call.

// InvItem class declaration

class InvItem

{

private:

char *desc;

int units;

public:

InvItem(int size = 51) { desc = new char[size]; }

InvItem(char *d) { desc = new char[strlen(d)+1];

strcpy(desc, d); }

68

PROGRAM CONTINUES

~InvItem(void) { delete[] desc; }

void setInfo(char *d, int u) { strcpy(desc, d); units = u;}

void setUnits (int u) { units = u; }

char *getDesc(void) { return desc; }

int getUnits(void) { return units; }

};

#endif

Contents of main program, pr13-13.cpp

// This program demonstrates a class with overloaded constructors

#include <iostream.h>

#include "invitem2.h"

void main(void)

{

69

PROGRAM CONTINUES

InvItem item1("Wrench");

InvItem item2;

item1.setUnits(15);

item2.setInfo("Pliers", 25);

cout << "The following items are in inventory:\n";

cout << "Description: " << item1.getDesc() << "\t\t";

cout << "Units on Hand: " << item1.getUnits() << endl;

cout << "Description: " << item2.getDesc() << "\t\t";

cout << "Units on Hand: " << item2.getUnits() << endl;

}

70

PROGRAM OUTPUT

The following items are in inventory:

Description: Wrench Units on Hand: 15

Description: Pliers Units on Hand 25

71

 A class may only have one default constructor and one destructor.

72

 You may declare and work with arrays of class objects.

InvItem inventory[40];

73

Contents of invitem3.h

#ifndef INVITEM3_H

#define INVITEM3_H

#include <string.h>// Needed for strcpy function call.

// InvItem class declaration

class InvItem

{

private:

char *desc;

int units;

public:

InvItem(int size = 51) { desc = new char[size]; }

InvItem(char *d) { desc = new[strlen(d)+1];

strcpy(desc, d); }

74

PROGRAM CONTINUES

InvItem(char *d, int u) { desc = new[strlen(d)+1];

strcpy(desc, d);

units = u; }

~InvItem(void) { delete [] desc; }

void setInfo(char * dscr, int u) { strcpy(desc, dscr); units = un;}

void setUnits (int u) { units = u; }

char *getDesc(void) { return desc; }

int getUnits(void) { return units; }

};

#endif

Contents of main program, pr13-14.cpp

// This program demonstrates an array of objects.

#include <iostream.h>

#include <iomanip.h>

#include "invitem3.h"

75

PROGRAM CONTINUES

void main(void)

{

InvItem Inventory[5] = { InvItem("Adjustable Wrench", 10),

InvItem("Screwdriver", 20), InvItem("Pliers", 35),

InvItem("Ratchet", 10), InvItem("Socket Wrench",
7)

};

cout << "Inventory Item\t\tUnits On Hand\n";

cout << "--------------------------------\n";

for (int Index = 0; Index < 5; Index++)

{

cout << setw(17) << Inventory[Index].GetDesc();

cout << setw(12) << Inventory[Index].GetUnits() << endl;

}

}

76

PROGRAM OUTPUT

Inventory Item Units On Hand

Adjustable Wrench 10

Screwdriver 20

Pliers 35

Ratchet 10

Socket Wrench 7

